Cardiovascular Pathophysiology 2

Roman Benacka Department of Pathophysiology Medical Faculty, Safarik University, Košice, Slovakia

Data and illustrations herein might be adapted from various printed or electrornic media and serve merely for demonstrational and educational purposes

Heart pump

Heart muscle

Heart muscle

Cardiomyopathies - Description

• **Definition:** Heterogenous group of disorders characterized by progressive structural pathological alterations in heart muscle affecting its efficient pumping functionality in different ways. Reasons include hereditary, congenital or acquired conditions or their combination affecting heart musce itself but should exclude cardiac muscle remodellation due to adaptive or compensatory hemodynamic responses.

• <u>Types</u>:

- **dilated** dilation and systolic dysfunction of left chamber or left and right chambers
- hypertrophic asymmetric chamber hypertrophy (septum) wirth diastolic disfunction
- **restrictive** severe diastolic dysfunction due to increased muscle stiffnes
- arrhythmogenic dysplasia of right chamber progressive replacement of heart muscle with fat and connective tissue

Etiology::

- **secondary cardiomyopaties** heart disorders; e.g. infective myocarditis, valvular disorders, degeberation, dystrrophy, non cardiac conditions toxic-metabolic (alcohol, cocaine, drugs), etc
- primary cardiomyopathies non-secondary, i.e. unfound underlying disorders → hereditary, congenital, unknown reason.

Cardiomyopathies – Etiology in general

Primary cardiomyopathies

Genetic

- Hypertrophic cardiomyopathy (HCM or HOCM)
- Arrhythmogenic right ventricular cardiomyopathy (ARVC)
- Isolated ventricular non-compaction
- Mitochondrial cardiomyopathy
- Mixed, e.g.
 - Dilated cardiomyopathy (DCM)
 - Restrictive cardiomyopathy (RCM)
- Acquired, e.g.
 - Postpartum cardiomyopathy
 - Takotsubo cardiomyopathy
 - Loeffler endocarditis

Secondary cardiomyopathies

- Metabolic
 - Amyloidosis, hemochromatosis
- Inflammatory
 - Chagas disease, coxackie, echo viruses
- Endocrine
 - Diabetic cardiomyopatia
 - Hypertyroidism, Acromegaly
- Toxic
 - Anticander chemotherapy, Alcohol
- Neuromuscular
 - Muscular dystrophy
- Nutritional hypoxic
 - Obesity
 - Ischemic cardiomyopathy

Cardiomyopathies - Comparison

	DILATED	RESTRICTIVE	HYPERTROPHIC
Ejection fraction (normal >55%)	Usually <30% when symptoms severe	25–50%	>60%
Left ventricular diastolic dimension (normal <55 mm)	≥60 mm	<60 mm (may be decreased)	Often decreased
Left ventricular wall thickness	Decreased	Normal or increased	Markedly increased
Atrial size	Increased	Increased; may be massive	Increased; related to abnormal
Valvular regurgitation	Related to annular dilation; mitral appears earlier, during decompensation; tricuspid regurgitation in late stages	Related to endocardial involvement; frequent mitral and tricuspid regurgitation, rarely severe	Related to valve-septum interaction; mitral regurgitation
Common first symptoms	Exertional intolerance	Exertional intolerance, fluid retention early	Exertional intolerance; may have chest pain
Congestive symptoms ^a	Left before right, except right prominent in young adults	Right often dominates	Left-sided congestion may develop late
Arrhythmia	Ventricular tachyarrhythmia; conduction block in Chagas' disease, and some families; atrial fibrillation.	Ventricular uncommon except in sarcoidosis conduction block in sarcoidosis and amyloidosis; atrial fibrillation.	Ventricular tachyarrhythmias; atrial fibrillation

Cardiomyopathies - Hemodynamic changes

Normal heart

Hypertrophy $\rightarrow \uparrow$ ejection Connective tissue cummu- Defect \rightarrow dilation $\rightarrow \uparrow$ diastolic pressure, but \downarrow the relaxa- lation + depositions $\rightarrow \downarrow$ filling + \downarrow contractility ejection) tion ર (diastolic failure). end - diastolic relaxation & Septal hypertrophy \rightarrow sub- filling (diastolic failure). valvular stenosis \rightarrow narro- Rigidity $\rightarrow \downarrow$ contractilityt wing an aortal outlet $\rightarrow \uparrow \rightarrow \uparrow$ ventricular volume resistance $\rightarrow \uparrow$ ventricular cuymmulation hypertrophy (systolic failure) failure)

(systolic

- diastolic filling compliance, elasticity $\rightarrow \downarrow \rightarrow \downarrow$ Ejection force and volume
 - \rightarrow Congestive heart failure

1. DILATED CARDIOMYOPATHY (DCM)

- •Alt.: Congestive cardiomyopathy, Idiopathic cardiomyopathy
- **Def:** Progressive mostly irrevesible disorder leading to dilation of the heart cavities with systolic dysfunction
- **Path:** Frequently starts in LV than goes to RV then to atria. **Ventricles** have **thin wall** (event. **excentric hypertrophy**), **big cavity** relative insuficiency of valves; cardiomyocytes (hypertrophy or atrophy)
- Occ: the most common type, mostly in adults 20 60y; more common in black americans
- Etio: toxic metabolic, infections, post-infarction (fibrosis), genetic forms = 25–35%
- Clin: Heart failure and volume overload signs/sympt.

<u>- Early sy.</u>: during exertion, sport, infection \rightarrow

Fatigue, Dyspnea, arrhythmias, stenocardia; swelling of the ankles, feet, legs, abdomen and veins in the neck

<u>- Late sy</u>.: in rest, night → left heart failure; decompensation (lung edema) -> cough, short breath, paroxysmal nocturnal dyspnoea, ortopnoea, palpitations

Stenocardia, feeling tight on chest, dyspnoea after excercise. In the evening edemas on lower extremity.

Etiology of dilatated cardiomyopathy

Parasitosis: Chagas disease (Trypanosoma cruzi)common infection in Mid- and South Americ most common infectious cause of cardiomyopathy

Infection: acute virus based myocarditis – Coxackie B, enteroviruses)

Alcoholic cardiomyopathy

Peripartum cardiomyopathy several weeks or months after labor; reversible in 50% of cases

Toxic cardiomyopathy (chemotherapeutics., Doxorubicin, cocain, heroine

Diabetic cardiomyopathy

Dilatated cardiomyopathy

Autoimmune mechanisms

Tachycardic cardiomyopathy = strcturalfunctional defects unmasked e.g. hyperthyreosis, excessive use of stimulants (coffein), uncontrolled tachyarrhythmias

Ischemic cardiomyopathy

after myocardial infarction

Familial dilated cardiomyopathy

25–35% of patients genetically very heterogenous disease; subclinical manifestant forms: asymptomatic changes in heart muscle

DILATED CARDIOMYOPATHY (DCM)

- Ptg: Heart chambers dilate \rightarrow heart muscle doesn't contract normally \rightarrow low ejection fraction blood cummulation in lungs \rightarrow intestitial edema \rightarrow ortopnoe, dyspnoe (systolic left heart failure);
- heart valve problems \rightarrow valvular insufficiency,
- arrhythmias ventricular tachyarrhytmia / bradyarrhythmia
- weak evacuation blood stasis \rightarrow thrombosis:
- Lab: Complete blood count, metabolic panel, Thyroid function tests, Cardiac biomarkers, B-type natriuretic peptide assay, Chest radiography, Echocardiography Cardiac magnetic resonance imaging (MRI), Electrocardiography (ECG)
- Th: ACE inhibitors \rightarrow LV dysfunction, Diuretics \rightarrow volume overload, b-blockers \rightarrow Digoxin \rightarrow inotrope, LV failure, Warfarin \rightarrow trombolytic (atrial fibrilation)

Dilated cardiomyopathy Excentric hypertophy as hemodynamic

Intracardiac fibrosis replaces working myocardium

Lymphocytic infiltration edema, diseminated giant cells degeneration of the myocardium

Intesticial edema vacuolar

compensation of dilated cariomyopathy. Endocardial fibrosis, intracardiac thrombosis

DILATED CARDIOMYOPATHY (DCM)

Case 1: Ischemic cardiomyopathy. The heart in a 48-year-old man who had had at least 2 acute myocardial infarcts in the past. posteriorly and the other anteriorly. The left ventricular ejection fraction was about 5%. (a) View of the heart showing both tricuspid and mitral valves. Both ventricles are greatly dilated.

Case 2. Idiopathic dilated cardiomyopathy. 61-year-old woman with chronic heart failure since age 51 years on medical therapy until age 59 years, when the heart failure worsened considerably and an implantable cardiac defibrillator was inserted. She never had chest pain. Earlier in life she had had several children. No foci of fibrosis or necrosis.

Roberts, W. et al.: Morphologic Features of the Recipient Heart in Patients Having Cardiac Transplantation Medicine. 93. 211-235, 2014. 10.1097/MD.000000000000038.

2. HYPERTROFIC CARDIOMYOPATHY (HCM)

- <u>Def:</u> progressive disease, often apears in childhood, or in adulthood; sudden cardiac death from maligant arrhytmia (trigger is extreme physical activity); non-compensatory (no hemodynamic reason) hypertrophy of myocard (mainly septum) resulting into subvalvul obstruction (about 1/3 of patients with systolic dyafunction) and weak diastolic relaxation, filling (diastolic dysfunction), lower contractility;
- Etio: 50-60% cases genetic; AD trait, sarcomeric proteins, in 45% mutations in genes for heavy β myosine, 35% cardiac myosine binding protein C; insertions / deletion polymorphisms in gene for ACE;
- Path: concentric hypertrophy; small ventricular diameter; simialr picture as in metabolic accumulates (Fabry dis., glycogensis, amyloidosis...); dezorganisation of muscle fibres (disarray), hypertrohy of cardiomyocytes, interstitial fibrosis
- Clin.: dyspnoea, tiredness, diastolic heart failure, pulmonary vein congestion; myocardial ischemia (capillary pressure in systole, decrease of myocardart filling in diastole); arrhythmias

HYPERTROPHIC CARDIOMYOPATHY (DCM)

Case 1. Hypertrophic cardiomyopathy. 41year-old man; hypertrophic cardiomyopathy was diagno-sed at 6 y.. At age 26 years, atrial fibrillation appeared and during the next 15 years he was cardioverted 98 times. He eventually developed complete heart block, and a pacemaker was inserted. At age 30 years, an intracardiac defibrillator was implanted.

Case 2. Hypertrophic cardiomyopathy. 68year-old obese man with obstructive sleep apnea, and chronic renal disease, stage 3. was diagnosed with hypertrophic CM years earlier.with recurrent episodes of ventricular tachycardia, atrial fibrillation and other atrial arrhythmias. implantable cardiac defibrillator.

3. RESTRICTIVE CARDIOMYOPATHY (RCM)

- Def: walls are rigid due to infiltration; diastolic stretching (and blood filling) of chambers is restricted (reduced compliance)
 → ↓ EDV (end diastolic volume) of either or both ventricles; systolic function and wall thickness are normal
- Occ: least common CM; 5% of all primary heart muscle diseases
- Class: 1. Extramyocardial ECM (non cardial dis.) → a) non-infiltratíve, b) infiltrative (e.g. amyloidosis, sarcoidosis, hemochromatosis,...); 2. Myocardial ECM

• <u>Etio:</u>

- a) idiopathic (not other category, unindentified, ? hereditary);
 b) primary (cardiac dis.), e.g. endomyocardial fibroelastosis ,
 Löffler's endocarditis, c) secondary (systemic dis.) infiltrative (amyloidosis, hemochromatosis, sarcoidosis); interstitial fibrosis (post radiation therapy)
- Sy: a) tiredness, failting (orthostatic hypotension) = frequent sy., b) right heart failure signs (swelling of lower extrem.) = among first, c) heavy breathing (dyspnoe), palpitations, precardiac pain (angina - like)

RESTRICTIVE CARDIOMYOPATHY

- <u>Ptg:</u> atrias are extremly dilated + thrombi are often formed; thickening of chambers and valves (infiltration);
- **Dif.dg:** restriction due to constrictive pericarditis.

Stiff and thickened wall

Case 1: Restrictive cardiomyopathy. Cardiac sarcoidosis.52-year-old woman who had developed heart failure beginning at age 48 years (severe global left ventricular hypokinesis, ejection fraction of 10%) normal coronary arteries, implantable cardiac defibrillator/pacemaker

4. ARRHYTHMOGENIC DYSPLASIA OF RIGHT CHAMBER

- <u>Def:</u> non-ischemic genetically based type of cardiomyopathy with fibro- fatty or fatty infiltration and replacement of the right ventricular myocardium associated with RV arrhythmias (premature ventricular beats, ventricular tachycardia, ventricular fibrillation VF.
- Epi: may manifest in children; most common first signs in young adults (males mainly); 30–50% familial
- Clin: (80%) syncope dyspnea excercise related (cause of sudden cardiac death in athletes);
 (20%) palpitations; right ventricular outflow tract (RVOT) tachycardia (monomorphic ventricular tachycardia).
- Etio: usually AD inherited disease (variable expression) linked with mutations of protein components of desposomes in intercalated disks of cardiomyocytes; linked with diffuse palmoplantar keratoderma, and woolly hair (AR -Naxos disease)

Case 1: 26-year-old man developed symptoms of heart failure at age 12 years, followed later by ventricular arrhythmias and bundle branch block. left ventricular ejection fraction fell to 15%. dilatation of both ventricles. ventricular wall in the right ventricular of adipose tissue, fibrous tissue, and a few myocardial cells

 Pat: starts subepicardially leading to transmural defect (possibly aneurysmal dilatation of the RV in 50%) in the diaphragmatic, apical, and infundibular regions. Residual myocardium in RV (trabeculae) hypertrophied. LV involved in 50–60% (late in disease,poor prognosis).

Two patterns:

- A. Fatty infiltration: fatty tissue without wall thinning.
- B. B Fibro-fatty infiltration: patchy myocarditis is involved in up to 2/3 of cases, with inflammatory infiltrates (mostly T cells)
- Ptg: abnormal aggeregation of desmin (intermediate filament protein linked to the desmosomes) & associated proteins; various mutations in the desmin (DES) gene (penetrance 20–35%)

ADVANCED PATHOPHYSIOLOGY

Hereditary forms of cardiomyopathies

Familial dilated cardiomyopathy (CMD) – Examples

Туре	Locus	Gene	Protein	Туре	Locus
CMD1A	1q21	LMNA	Lamin A	CMD10	12n12 1
CMD1B	9q13	TMOD1	Tropomodulin-1		1201211
	10q22-		PDZ domain-containing	CMD1P	6q22.1
CMD1C	23	LDB3	protein Z-BAND cypher	CMD1R	15a14
CMD1D	1q32	TNNT2	Troponin T type 2 (cardial)		
CMD1E	3p	SCN5A	Sodiun channel	CMD1S	14q12
CMD1G	2g31	TTN	Titinin in sarcomere	CMD1T	12q22
CMD1I	2a35	DES	Desmin in sarcomeres	CMD1U	14q24.3
	6a23-		eves absent (EVA) protein	CMD1V	1q31-q42
CMD1J	a24	EYA4	transcriptional activator	CMD1W	10q22-q2
	5a33	SGCD	Delta-sarcoglycan	CMD1X	9q31
	3433		Cystoing and glyging righ	CMD1Y	15q22.1
CMD1M	11n15 1	CSRP3	orotein – myogenic	CMD47	3p21.3-
		regulatory factor	CIVIDIZ	p14.3	
CMD1N	17q12	TCAP	Telethonin	CMD1AA	1a42-a43

Genetically heterogenous group of diseases

Туре	Locus	Gene	Proteín
CMD10	12p12.1	ABCC9	Receptor sulfonylurea 2 (SUR2)
CMD1P	6q22.1	<u>PLN</u>	Fosfolamban
CMD1R	15q14	<u>ACTC</u>	alpha Actin, cardiac muscle 1
CMD1S	14q12	<u>MYH7</u>	Myosine 7
CMD1T	12q22	<u>TMPO</u>	Thymopoietin
CMD1U	14q24.3	PSEN1	Presenilin-1
CMD1V	1q31-q42	PSEN2	Presenilin-2
CMD1W	10q22-q23	<u>VCL</u>	Vinculin
CMD1X	9q31	FCMD	Fukutin
CMD1Y	15q22.1	<u>TPM1</u>	Tropomyosin alpha-1 chain
CMD1Z	3p21.3- p14.3	TNNC1	Troponin C, slow skeletal and cardiac muscles
CMD1AA	1q42-q43	ACTN2	alfa-actinin 2 actin-binding protein
CMD2A	19q13.4	TNNI3	Troponin I
CMD3A	Xq28	TAZ	Tafazzin
CMD3B	Xp21.2	DMD	Dystrophin

Mutations can be found in **contractile system proteins** (e.g. actin, tropomyosin, troponin C, myosin), **adaptors + sarcomere elements** (titin,desmin,), **sarcomere –to- membrane-to extracelullar attachment system** (sarcoglycam, dystrophin, presenilin,vinculin, actinin), enzymes (tafazzin) etc.

Familial hypertrophic cardiomyopathy (CMH) - Examples

Forms	Gene	Locus	Encoded protein
CMH1	<u>MYH7</u>	14q12	Myosin heavy chain 7; beta subunite (MHC- β)
CMH2	TNNT2	1q32	Troponin T (type 2)
CMH3	TPM1	15q22.1	Tropomyosin 1 (alpha)
CMH4	MYBPC3	11p11.2	Myosin binding proteín C
CMH5	?	?	
CMH6	PRKAG2	7q36	AMP-activated PK (subunite gamma -2)
CMH7	TNNI3	19q13.4	Troponin I, cardiac
CMH8	MYL3	Зр	Myosin light chain 3
CMH9	TTN	2q24.3	Titin
CMH10	MYL2	12q23-q24	Myosin regulatory light chain 2
CMH11	ACTC1	15q14	Cardiac alpha – actin 1
CMH12	CSRP3	11p15.1	Cysteine / glycine-rich protein 3

Mutated proteins are mostly **parts of sarcomeric contractile apparatus** (myosin, actin, troponine, tropomyosine, titin). Mutations of troponin cause 50% mortality of HCM before 40 y.

Allelic heterogenity in cardiomyopathies - Examples

Familial restrictive cardiomyopathy (CMH) Examples

Туре	Locus	Gene	Protein
RCM1	19q13	TNNI3	Troponin I type 3 (cardial)
RCM2	10q23	<u>DES</u> 3	Desmin in sarcomeres
RCM3	1q32	TNNT2	Troponin T type 2 (cardial)
RCM4	10q21	MYPN	Troponin T type 2 (cardial)

MYOPALLADIN; MYPN 10q21.3

Cardiomyopathy, dilated, 1KK Cardiomyopaty, familial restrictive 4 Cardiomypathy, familial hypertrophic, 22

TROPONIN T2 TNNT2 1q32.1

Cardiomyopathy, dilated, 1D Cardiomyopathy, familial hypertrophic, 2 Cardiomyopathy, familial restrictive, 3 Left ventricular noncompaction 6

CAV3 M - Caveolin 3p25.3

Cardiomyopathy, familial hypertrophic Long QT syndrome-9 Muscular dystrophy, limb-girdle, type IC Myopathy, distal, Tateyama type Rippling muscle disease

Resources

- Murphy, J.G. Lloyd, M.A.: Mayo Clinic Cardiology. Mayo Clinic Cardiology: Concise Textbook (4 ed.), Oxford University Press, 2012, Online: May 2013 DOI: 10.1093/med/9780199915712.001.0001
- Nguyen, V.Q. Celebi M. M. : Dilated Cardiomyopathy. eMedicine. <u>https://emedicine.medscape.</u> <u>com/article/152696-overview</u>
- Shah, S.M.: Hypertrophic Cardiomyopathy <u>https://emedicine.medscape.com/article/</u> 152913-overview#a
- ww.heart.org/HEARTORG/Conditions/More/Cardiomyopathy/Dilated-Cardiomyopathy-DCM_UCM_444187_Article.jsp#.WpsDCjLkTIU
- Roberts, W., Roberts, C.C., Ko, J.M., Hall, S.A. : Morphologic Features of the Recipient Heart in Patients Having Cardiac Transplantation Medicine. 93. 211-235, 2014. 10.1097/MD.00000000000038.
- Online Mendelian Inheritance in Man, OMIM (TM). McKusickNathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD)http://www.ncbi.nlm.nih.gov/omim/
- Runge, M.S., Greganti, M.A.: Netter's Internal Medicine, 2e (Netter Clinical Science, Saunders; 1357 p., 2008, ISBN-13: 978-1416044178