DISORDERS OF WATER & ELECTROLYTE METABOLISM

LECUTRE IN PATHOPHYSIOLOGY DENTAL MEDICINE 2020/2021

EVA LOVÁSOVÁ & OLIVER RÁCZ

AGE DEPENDENCE OF FLUID HOMEOSTASIS

Age	Total water %	Daily exchange %
newborn	79	
3-6 mo.	70	14-16
7-12 mo.	60	12-15
adult man	60	2-4
adult woman	51	2-4

Newborns -ECS > ICS, danger of dehydratation In old age - impaired adaptation, danger of dehydratation + less muscles, much adipose tissue – less water Women – much addipose tisuue, less water than men

Obese people - much fat, less water

DISTRIBUTION OF WATER IN HUMAN BODY

Compartment	Volume litres	% of body mass	% of total water
ICS	28	40	67
ECS	14	20	33
ISF	11	15,7	26
IVF	3	4,3	7
SUMMA	42	60	100

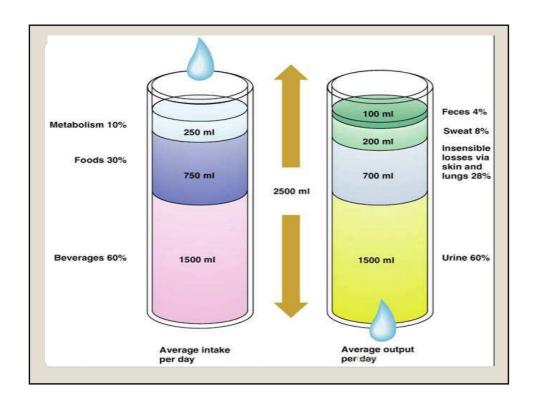
Amount of water in body of young adult man, weight 70 kg

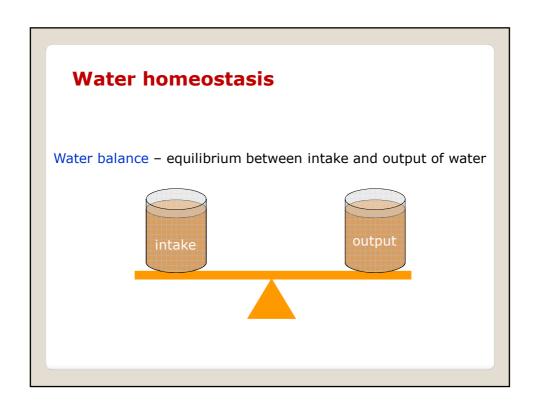
Water intake

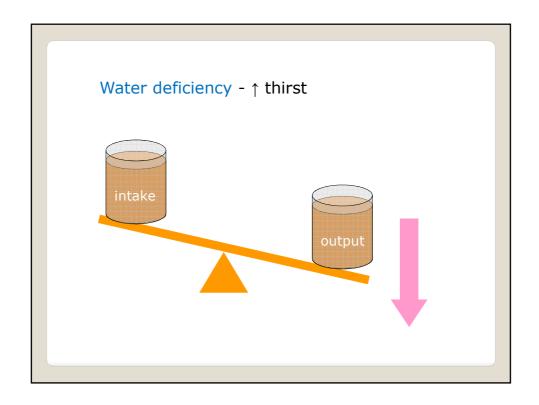
- beverages 1,0 1,5 l/d
- water in food cca 1 l/d
- water from metabolism cca 0.3 l/d

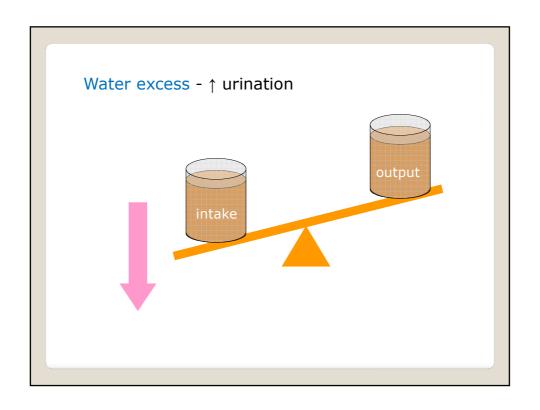
oxidation of 100 g proteins 35 ml water

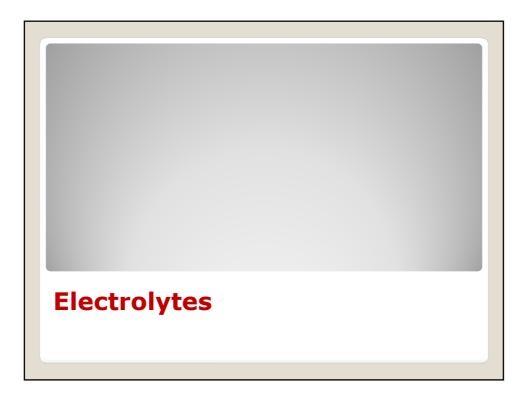
100 g sugar 60 ml water 100 g fat 107 ml water

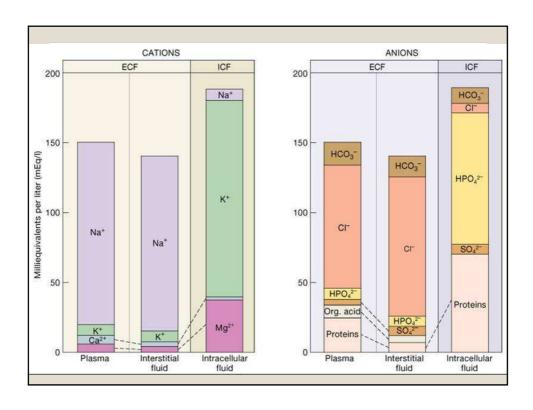

Total intake of water cca 2.0 - 2.5 l/d


Water output

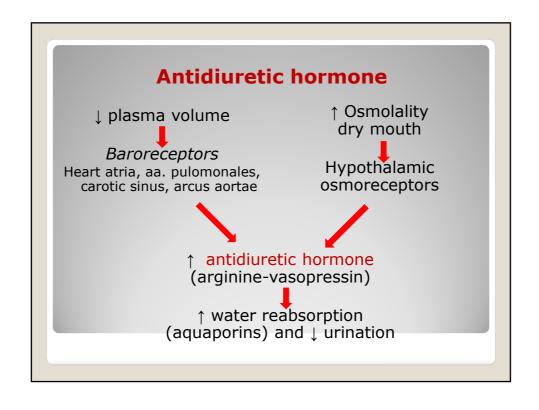

- Urine 1.0 1.5 l/d
- Perspiratio0.3 0.6 l/d
 - Skin (sweating) 0.2 0.4 l/d

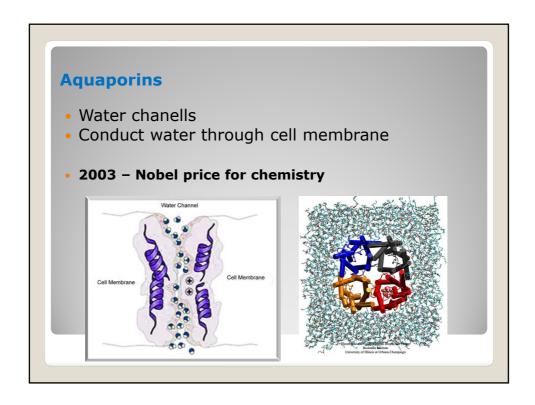

(more – hot environment, physical activity, fever)

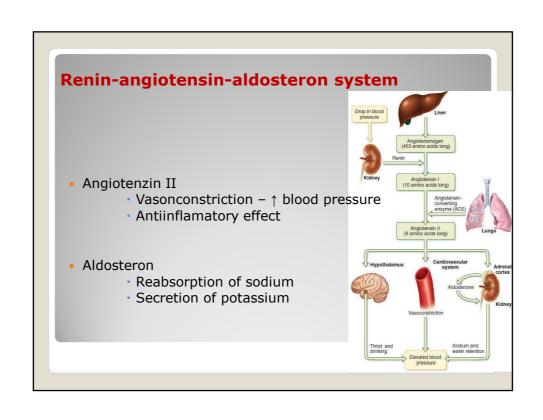

- Lungs respiration cca 0.2 l/d
- feces 0.1 0.2 I/d (more in diarhea)
- Increased output
 - vomiting
 - bleeding
 - redistribution of water edema
- Total output of water cca 2.0 2.5 l/d

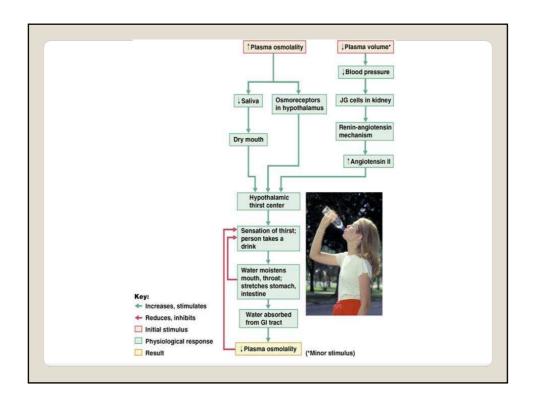


Ion	Amount in body	Plasma mmol/l	Cells mmol/l
Sodium, Na+	92 g 4 mol	141	10
Potassium, K ⁺	100-140 g 2,5-3,5 mol	4	155
Calcium, Ca ²⁺	1200 g 30 mol	2,5	< 0,001 (uneven in organells)
Magnesium, Mg ²⁺	26,5 g 1,1 mol	1	15
Chloride, Cl-	50 g 1,4 mol	103	8
Phosphate (as phosphorus)	775 g 25 mol	1	65



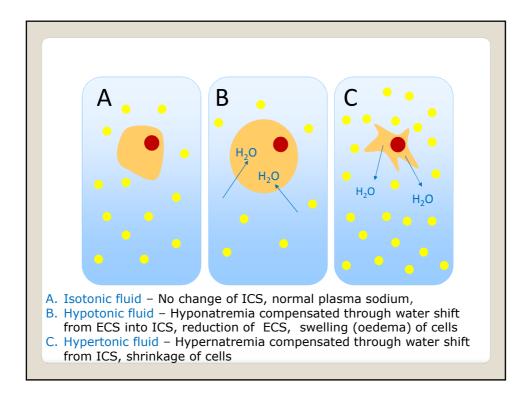

Osmolality - mmol/kg of solvent Osmolarity - mmol/l of solvent Osmolarity of plasma = 2*[Na] + [glucose] + [urea]cca $290 \pm 5 \text{ mmol/l}$


(kations 140 mmol/l + anions 140 mmol/l + glucose 5 mmol/l + urea 5 mmol/l)


Osmolality of plasma

Natriuretic peptides

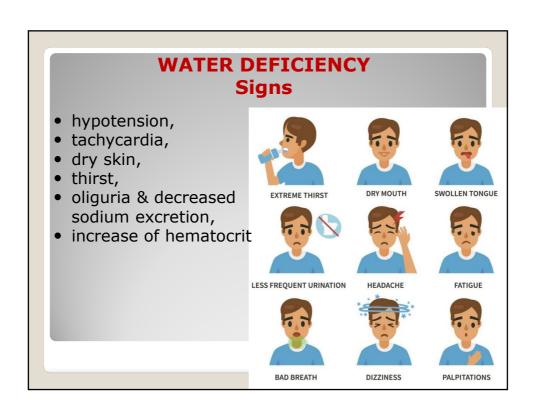
peptides which induce natriuresis


Types:

- Atrial natriuretic peptide (ANP) produced in atria
- Brain natriuretic peptide (BNP) ventricles in humans, brains in pigs
- C-type natriuretic peptide (CNP)
- Dendroaspis natriuretic peptide
- Urodilatin kidneys

DISTURBANCES OF THE SYSTEM

- No pure forms loss of water, salt...
- Immediate reaction of compensatory systems
- ECS is in contact both with external environment and with ICS
- ICS is in contact only with ECS
- Plasmatic concentrations are not amounts and does not inform on dynamics of compounds



POSSIBLE CAUSES AND MECHANISMS

- Extreme deviations of external environment
 - Dehydratation from insufficient water intake
- Disturbances caused by damaged function of effector systems (kidneys, GIT, etc.)
 - · Diarrhoea, vomitus, kidney diseases
- Disturbances caused by erroneous regulation (CNS, ADH, aldosterone)
 - Diabetes insipidus, Conn sy., SIADH
 - · Heart failure & RAA activation

WATER DEFICIENCY

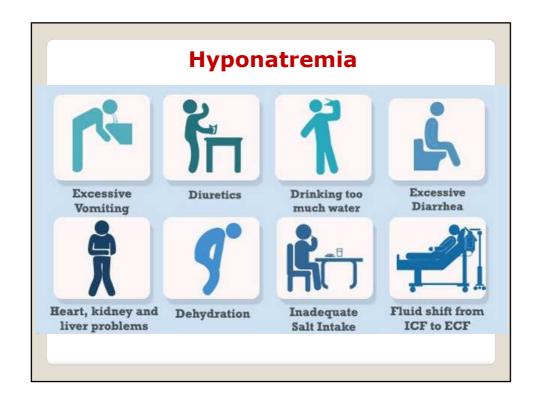
- Insufficient fluid intake
- Inability to drink (loss of consciousness)
- Losses through GIT (diarrhoe, vomitus)
- Losses through kidneys
 - (diuretics, osmotic diuresis, kideny diseases,
 - ∘ m. Addison)
- Losses through skin (increased sweating, burns)
- Displacement into third place (ileus, ascites)
- Blood loss (?)

Water deficiency signs in oral cavity

- Xerostomia
 - · Decreased amount of saliva
 - Dry skin and mucous
 - Salivary gland swelled and painfull
 - Inflamatory changes cheilosis, glositis
 - ↑ risk of caries
 - † risk of infection candidiasis
- Dysphagia problem with swallowing
- Dysfonia loss of voice
- Dysgeusia loss of taste

WATER RETENTION

Causes


Increased fluid intake

- Increased intake & disturbed regulation SIADH
- · kidney failure
- nephrotic sy.
- heart failure
- liver cirrhosis

Symptoms: Oedema.

Hyponatremia Na <135 mmol/l

- Loss of sodium
 - · Addison disease
 - Diuretics
 - · GIT diseases vomiting, diarrhea
- Decreased intake of sodium (rare)
 - · Combination of low sodium diet and treatment by diuretics
- · Dilute hyponatremia
 - Drinking too much water water intoxication
 - SIADH antidiuretic hormone hyperproduction
 - · Kidney failure
 - · Heart failure
 - · Liver cirrhosis
 - Shift of water from ICF to ECF (hyperglycemia, hyperlipidemia, hyperproteinemia)

Hyponatremia

Clinical signs

- · nausea and vomiting,
- headache,
- confusion,
- fatigue,
- irritability,
- muscle weakness,
- · spasms, cramps, seizures,
- edema
- hypotension
- unconsciousness, coma

HYPONATREMIA SIGNS AND SYMPTOMS

S tupor/coma

Anorexia, (nausea and vomiting)

L ethargy

Tendon Reflexes (decreased)

Limp muscles (weakness)

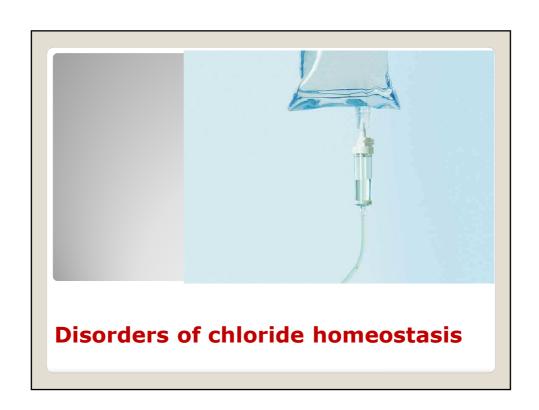
Orthostatic hypotension

S eizures/headache

S tomach cramping

Hypernatraemia >145 mmol/l

- · Increased sodium intake
 - per os
 - parenteral
- Decreased elimination of sodium
 - Renal insufficiency
 - Endocrine diseases hyperaldosteronism (Conn syndrome), Cushing syndrome
- Loss of water
 - · Diabetes insipidus
 - Decreased water intake unconsciousness, brain injury or tumor
 - Loss of water from GIT (diarrhea)
 - Sweating fever



Hypernatraemia

CInical signs

- Thirst
- Confusion
- Hyperreflexia, muscle spasms
- HypotensionTachycardia
- Coma

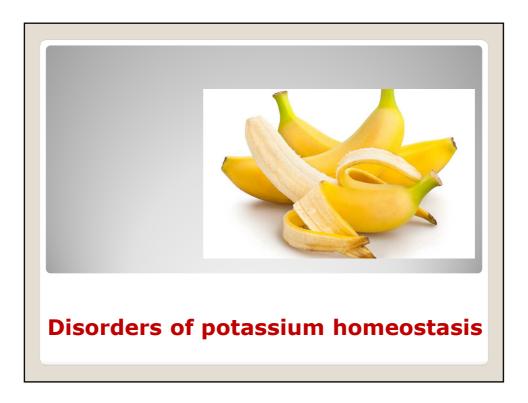
Hypochloremia < 97 mmol/l

Causes

- Hyponatremia
- Metabolic alkalosis
- · Cystic fibrosis

Clinical signs

- No clinical signs
- Signs of hyponatremia
- Metabolic alkalosis


Hyperchloremia >109 mmol/l

Causes

- Dehydration
- Diabetes insipidus
- Diuretics
- Hypernatremia
- Metabolic acidosis

Clinical signs

- No clinical signs
- Dehydration
- · Metabolic acidosis

POTASSIUM HOMEOSTASIS

- Serum concentration: 3,8 5,5 mmol/l*
- Total amount depends on muscle mass (young > old; man > women)
 37 - 52 mmol/kg body mass
- Intake: 2-6 g/d = 50-150 mmol/d
- Excretion through kidneys 10 20 mmol/d (0,4 – 0,8 g/d).
- Inverse association with Na excretion
- GIT excretion is important in kidney failure and in pathological conditions (diarrhoea)

*Depends on method. Preanalytic errors - hemolysis!

FUNCTIONS OF POTASSIUM & INTERPRETATION OF RESULTS

Functions

- intracellular osmotic pressure
- · resting & action potential
- enzyme activity, proteosynthesis

Problems:

- assessment of cell homeostasis from extracellular concentration
- pH changes: exchange H/K between ECF/ICF

INTERNAL & EXTERNAL BALANCE

internal - ECF/ICF

- acidosis: H+ enters the cells, K+ out into ECF
- alkalosis: H+ into ECF, K+ enters the cells
- K⁺ entry into cells: insulin (together with glucose), aldosterone, adrenaline
- rapid cellular proliferatiom (treatment of pernicious anaemia with ${\rm B}_{12}$ vitamin
- cell necrosis, hemolysis (crush sy, malignancies), K⁺ into ECF

external - ECF/environment

- kidney or GIT retention/losses, parenteral intake
- dietary deficiency/excess as an additional factor

HYPOKALAEMIA < 3.5 mmol/l

Causes

Disorders of external balance

- GIT diarrhoea, vomitus, tumors of colon, rectum, pancreas
- Kidneys diuretics, polyuric stage of renal failure, hereditary tubulopathies,
- Primary & secondary hyperaldosteronism, abuse of liquorice, Cushing, ectopic ACTH production

Disorders of internal balance

- Treatment of diabetic hyperglycaemia with insulin (K⁺ entry into cells together with glucose)
- Alkalosis
- Rapid cellular proliferation
- Familiar hypokalaemic periodic paralysis (hereditary)

HYPOKALAEMIA

Symptoms

- Membrane hyperpolarisation
- Weakness, constipation, ileus, hypotonia
- · Depression, confusion
- Arrhytmia, potentiation of digitalis toxicity
- · ADH resistance, polyuria, polydipsia
- ECG flat/inversed T, prolonged PR, ST depression, prominent U

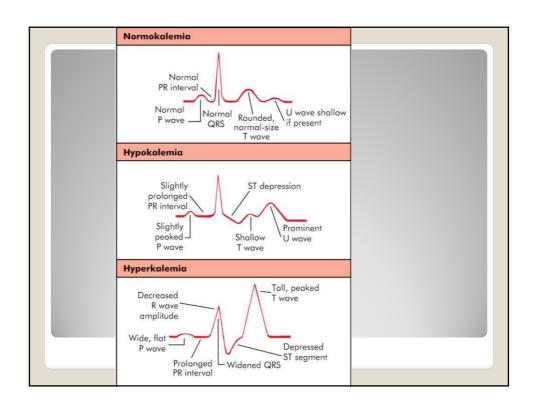
HYPERKALAEMIA >5.5 mmol/l

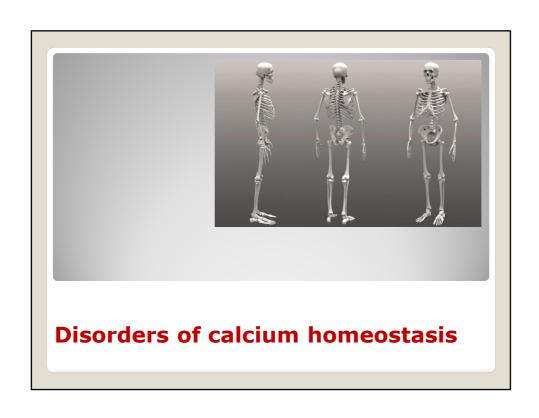
Causes

Disorders of external balance

- Decreased excretion
- Increased intake (infusions, NaCl substitution) only in the case of impaired kidney function
- m. Addison, adrenogenital sy., inhibitors of angiotensin converting enzyme

Disorders of internal balance


- Acidosis
- Cell necrosis rhabodmyolysis, burns, cytostatic treatment of malignanacies
- Digitalis overdosis
- Hyperkalaemic periodic paralysis (hereditary)
- Malignant hypertermia (hereditary)


43

HYPERKALAEMIA

Symptoms

- Low resting potential, short cardiac action potential, increased speed of repolarization →
- Can kill without warning
- Ventricular fibrillation and cardiac arrest may be the first signs! (if you do not check K & ECG)
- ECG: abnormal/absent P; broad QRS, peaked T, ST depression

CALCIUM

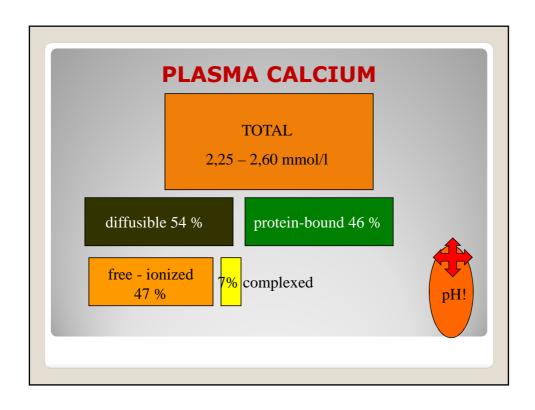
- Total body
- ECF
- Plasma
- Bone / ECF exchange
- Daily losses
 - urine 6 mmol
 - faeces 19 mmol
 - skin 0,3 mmol

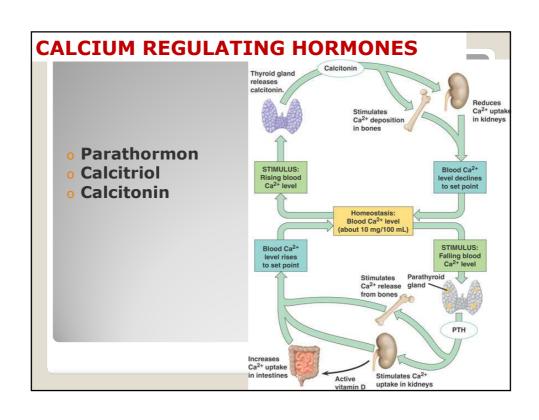
1200 g

0,9 g 0,36 g

30 mol 22,5 mmol 9,0 mmol

500 mmol/d 25 mmol/d (1g)


FUNCTIONS OF CALCIUM


- Structural
- Neuromuscular
- Blood
- Signal systems

- Bone, teeth
- Control of excitability; Neurotransmitter

release

- Muscle contraction Coagulation
- Messenger

FUNCTIONS OF PARATHORMON

BONE

• Release of calcium 1 [Ca²⁺]

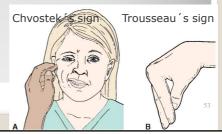
Osteoclastic resorption

KIDNEY

• Calcium reabsorbtion ↑ [Ca²+]

2nd hydroxylation of vit.D ↑ Ca, P absorbtion

Phosphaturia
 ↓ [PO₄]


HYPOCALCAEMIA < 2.2 mmol/l

- Hypoparathyroidism
 - Congenital (with Di George sy.)
 - Acquired autoimmune, surgery, hemochromatosis, tumors
- Pseudohypoparathyroidism
- Magnesium deficiency (pseudo ?)
- · Deficiency of vitamin D
- Disorders of vitamin D metabolism end stage renal disease
- Acute pancreatitis, transfusions with citrate, neonatal

HYPOCALCAEMIA

Symptoms

- · Stupor, numbness, paraesthesia
- Muscle cramps and spasms "tetany"
- Laryngeal stridor
- Convulsions
- Chvostek+, Trousseau+, long QT on ECG
- Cataract in chronic hypocalcaemia
- Rickets (rachitis) in vitamin D deficiency

HYPERCALCAEMIA > 2.7 mmol/l

- COMMON (90% of all)
 - Primary hyperparathyroidism
 - Malignancies bone metastasis
- LESS COMMON
 - Thyreotoxicosis, sarcoidosis
- UNCOMMON
 - Lithium treatment, tbc, immobilisation, adrenal failure, renal failure, hereditary

HYPERCALCAEMIA

Clinical signs

- Weakness, tiredness, weight loss
- Imparied concentration, drowsiness (coma)
- Anorexia, nausea, vomiting, constipation
- Polyuria, dehydration
- Renal calculi, nephrocalcinosis
- short QT, arrhytmias

Hyper- and hypocalcemia in oral cavity

- Hypercalcemia
 - Jaw bone demineralization
 - Loss of lamina dura
 - Osteitis fibrosa cystica increased osteoclastic resorption, hemorrhage and cysts formation

- Hypocalcemia
 - Hypoplasia and discoloration of teeth
 - Possible teteany cramps

Disorders of magnesium and phosphates homeostasis

MAGNESIUM

- 60 % in bones, higher in ICF than in ECF
- Only 0,3 % in blood, 30% protein bound
- Serum 0,7 1,0 mmol/l
- Regulator is not known! adrenal medulla, insulin, parathormon ???
- Regulated resorption from GIT ?
- Excretion through urine and stool

MAGNESIUM

- Neuromuscular excitability (inhibition mediated through decreased secretion of acetylcholine?)
- Bone structure
- Enzyme activity, energy production, transport mechanisms, ribosomes
- Regulation of haemocoagulation and membrane function
- Cardioprotective antiischemic, antihypoxic effects
- Sedative effect on NS
- Antihypertensive
- Antithrombotic

Hypomagnesiemia < 0.7 mmol/l

Causes

- Deficiency associated with soil and plant deficit ⇒grass tetany of cattle
- Some drugs and stress can increase excretion
- Unhealthy diet (alcohol)
- · High doses of calcium

Signs

- Spasms
- · Tiredness, irritability, tremor
- Dysmenorea, preeklampsia
- Arrythmias

Hypermagnesiemia > 1 mmol/l

Rare

PHOSPHATE

- 85 % in bones
- in ICF and in ECF
- In plasma phospholipids, phosphate esters and ionized phosphate
- Regulation PTH, vit. D and calcitonin (together but opposite with calcium)

Hypophosphatemia < 0.8 mmol/l

Causes

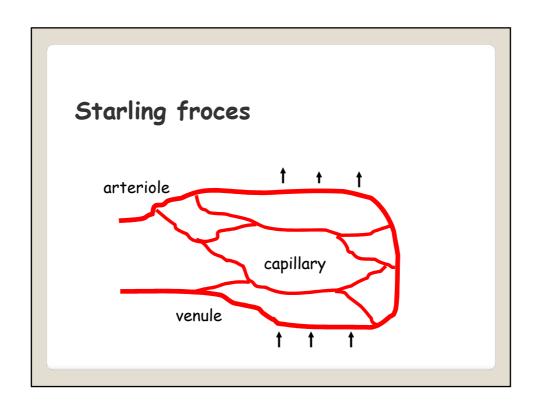
- Intestinal malabsorption
 - Vit. D deficiency
 - Use of Mg- and Al-containing acids that bind phosphates
 - · Alcohol abuse
 - Malabsorption abuse
- Increased renal secretion
 - Hyperparathyroidism

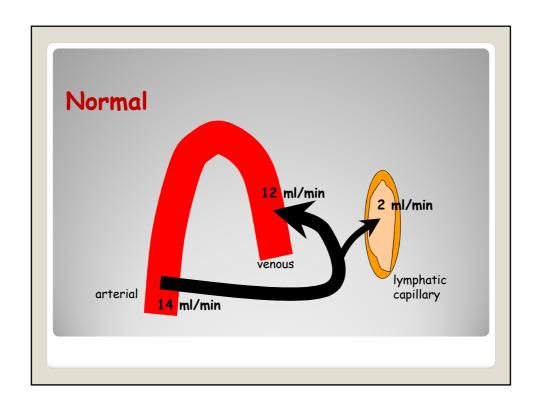
Signs and symptoms

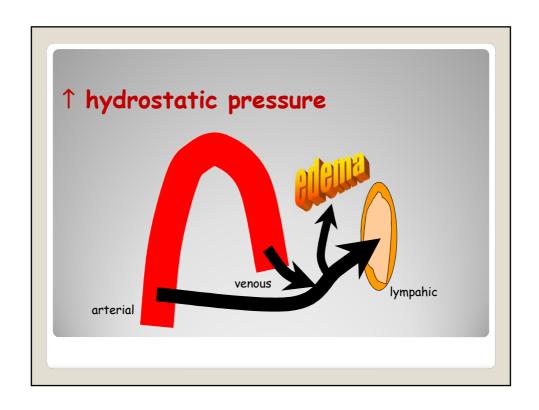
- Only in higher deficit
- Disturbed energy metabolism nerves and muscles dysfunction
- Erythrocyte, leukocyte and platelets dysfunction
- ↑ risk of infection
- Hemorhage

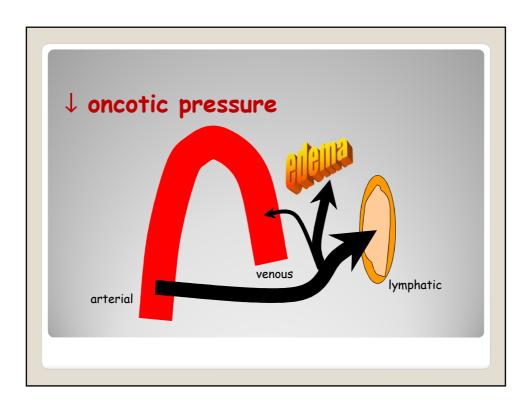
Hyperphosphatemia > 1.6 mmo/l

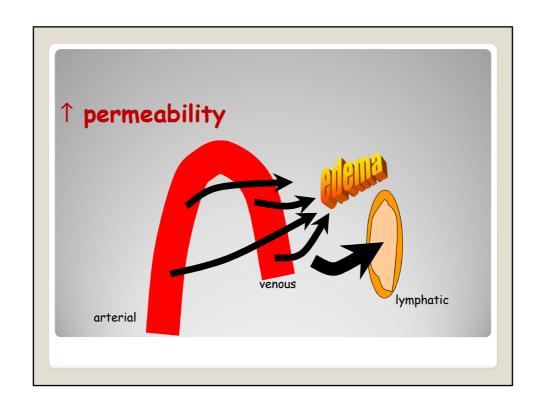
Causes


- Destruction of cells tumors or anticancer therapy
- Long term using of phosphate-containing drugs (laxatives)
- Hypoparathyroidism


Signs and symptoms


- Symptoms of hypocalcemia tetany
- Calcification of tissues

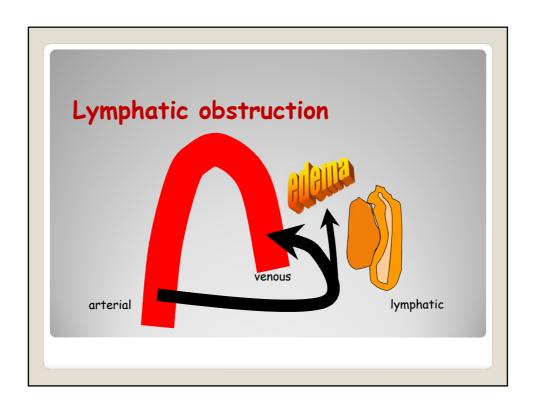




\downarrow oncotic pressure

- •hypoproteinaemia
 - •liver diseases
 - •cirrhosis
 - ullet oncotic pressure + \uparrow hydrostatic pressure (portal hypertension)
 •nephrotic syndrome

 - •protein malnutrition kwashiorkor
 - •some metabolic diseases



$\uparrow \textbf{permeability}$

- •inflammation mediators
 •allergy histamine
 •hypoxia ↓pH (mountain disease)
 •toxic

Lymphatic obstruction

lymphoedema (woody oedema)

- •lymfatic obstruction
 - •parasites (filariasis)
 - •cancer of lymph nodes
 - •surgery or radiation therapy (breast cancer)
 - •inflammatory changes lymphangitis

