

Classific	Sing ation accor	gle gene Point mu eding to c	e mutations _{utations} hanges in nucletion	de sequence
Substitut	ions			
Transitio	n Trans	sversion	Deletion	Inzertion
Thr Val ACA GT GCA GC Ala Ala	Ile A ATT A ATA Ile	Gly GGA TGA Stop	Thr Val His ACAGTACAC Thr Tyr ? ACATACAC	Ile Gly ATTGGA Ile Arg ? ATT <mark>C</mark> GGA
٠				٠

	Affected proteins	
Function	Example of disease (protein)	Inheritance
Enzyme	Phenylketonuria (phenylalanine hydroxylase) Galactosemia (galactose-1-tranpherase) Acute Intermittent Porphyria (porphobilinogen deaminase)	AR AR AD
Transporter	Cystic fibrosis (Cl ⁻ channel) Talasemia (hemoglobin) Sickle cell anemia (Hb)	AR AR AR
Structure	Osteogenesis imperfecta (collagen I) Duchenne dystrophy (dystrophin)	AR, AD XR
Plasma proteins	Immunodeficiency (complement) Hemophilia A (coagulation factor VIII)	AR, AD XR
Cell signalization	Cancers (transcription factors, signal molecules, signal receptors)	AD
Growth and differentiation	Retinoblastoma (Rb-gene product) Breast cancer (BRCA-gene product)	AR AR
Other		
٠		٠

Autosomal dominant diseases

Localisation of pathological gene	autosome
Clinical manifestation	Clinical signs expressed in heterozygotes and also in homozygotes In some AD diseases homozygote may have more serious symptoms
Product of gene	Mainly proteins with morphological and structural function, transporters, receptors
Diseases	Familial hypercholesterolemia Familial combined hyperlipidaemia Marfan syndrome Achondroplasia Acute intermitent porfyria

Autosomal recessive diseases			
Localisation of pathological gene	autosome		
Clinical manifestation	Clinical signs expressed only in homozygotes, heterozygots are obviously clinical healthy carriers		
Product of gene	Primarily enzymes (enzymopathies)		
Diseases	majority of enzymopathies Sickle cells anaemia Cystic fibrosis Xeroderma pigmentosum		
Characteristic features	More frequent in consanguineous marriages, or in a certain population or in a certain geographical location (e.g. cystic fibrosis in Caucasians, sickle cell anemia in Africa, Tay-Sachs disease in Jews of Ashkenazi origin, alkaptonuria in Slovakia, congenital glaucoma in the Roma population)		

Signs and symptoms

Lungs

- · persistent cough, frequent inflammations
- wheezing, shallow breathing
- frequent lung and respiratory infections • asthma and sinus infections progressing
- to lung damage

GIT

- low absorption of nutrients from the diet
- great appetite with minimal weight gain
- slow growth
- greasy, thick stools chronic inflammation of the pancreas
- intestinal obstruction in newborns

Other

- significantly salty sweat often the
- first sign in young children
- infertility mainly men

31

X-linked dominant diseases X day

pathological gene	× chroniosome
Clinical manifestation	Men and women Transmission from father to son is not possible If the mother is affected (heterozygous), 50% probability of affecting daughters (heterozygotes) and 50% of sons (hemizygotes) If the father is affected, all daughters are affected (heterozygotes), all sons are healthy
Diseases	Vit. D resistent rachitis Rett syndrome
Characteristic features	In affected women (heterozygotes), the "normal" gene suppresses the expression of the pathological gene, and therefore in male patients (hemizygotes) a more severe or even fatal course can be expected

Localisation of pathological gene	X chromosome
Clinical manifestation	Men In women very exceptionally (e.g. the union of an affected man - hemizygous with a carrier woman - heterozygous) Heterozygous women (carriers) may have clinical symptoms - cause: lyonization - random inactivation of one X chromosome - if more active X chromosomes with mutation remain, symptoms will manifest
Diseases	Hemophilia A, hemophilia B Duchenne muscular dystrophia Becker muscular dystrophia Lesh-Nyhan syndrome Ocular albinism (type I and II) Color blindness

Genetics in dentistry Non Mendelian diseases Fragile X syndrome • Large and ling face

- Prominent forehead and jaw
- High-arched palate
- Macroglossia, microdontia, supernumerary teeth, and abnormal occlusion (eg, open or cross-bite)

Angelman syndrome

- Smooth philtrum, thin upper lip, prominent lower lip
- Wide mouth
- Small and widely spaced teeth
- Small chin

Mechanisms DNA methylation - methyl group is added at the 5-carbon of the cytosine to form 5-methylcytosine. DNA methylation generally results in gene silencing or reduced gene expression. • Histone modification - enzyme catalyzed reactions such as lysine acetylation, lysine/arginine methylation, serine/threonine phosphorylation, and lysine ubiquitination alter their functions resulting in promotion or repression of gene transcription. Non-coding RNA-mediated pathways - microRNAs (miRNA) are a class of non-coding single stranded RNAs of 19-25 nucleotides in length, which are reported to have a key role in the regulation of gene expression - binds to mRNA and stop translation. Epigenetics DNA hylation R DNM HA mi-RNA CAC CAC CAC CAC 11111111111111 **DNA Methylati**

Thank you for Your attention!