

Nutrition

- · Provision of energy to organism (in the form of chemical energy)
 - · 1 kcal 4,186 kJ

nutrient	kJ/g
proteins	17,2
lipids	38,9
saccharides	17,2

Provision of organic and anorganic substancies for the body development

Energy expenditure

- · Basal metabolism basal metabolic rate
 - energy expended daily at rest (transport mechanisms, biosynthesis, thermoregulation, functioning of the vital organs)
 - 5 900 8 400 kJ/day

organ	% of BMR
liver	26%
brain	18%
hearth	9%

· Meatbolism during physical activity

activity	kJ/h
watching TV	250
cleaning	1090
cleaning of the windows	1130
sex	1600
swimming	2800
running	3750

Thermogenesis

3

Necessary food components

- saccharides
- lipids
- proteins
- · vitamins
- · minerals Na, K, Ca, Cl, Mg, P
- trace elements Fe, Zn, Cr, Cu ...
- · fibre
- water

Optimal nutrition

- Optimal energy intake
 - Depends on age, gender, lifestyle (intensity of physical activity at work, at home, in free time), health state (body size, healthy vs. acute/chronic disease, reconvalescence...) other factors (intensive growth period, pregnancy, lactation, climate...)
- Optimal basic nutrients ratio proteins, lipids (↑ PUFA,

 ↓ cholesterol), carbohydrates
- Optimal intake of fibre (25-35 g/day)
- Optimal intake of vitamins and minerals (3-5 portions of fruits a 3-5 portions of vegetable/day)
- Lower intake of salt (3 5g/day)

5

Recomended energy intake

```
55 - 60 % - saccharides

max. 30 % - lipids
    cca 10 % - saturated fatty acids
    cca 10 % - monounsaturated fatty acids
    cca 10 % - polyunsaturated fatty acids
    (n-6 and n-3 polyunsaturated FA)
    lower than 300 mg/day - cholesterol

10 - 15 % - proteins
```


Inadequate nutrition

- Overnutrition
 - obesity (adiposity)
 - vitamin excess
- Undernutrition
 - quantitative starvation
 - chronic undernutrition
 - qualitative kwashiorkor
 - vitamin deficiency
 - trace elements deficiency

9

Definition

Obesity (adiposis, fatness) is a complex, multifactorial metabolic disorder defined as an excess of fat mass with an impact on health.

13

Definitions

 Obesity: adiposity accumulation of fat tissue

Overweight: weight increased above the normal values

(BMI increased - fat, but also muscles, water, baby...)

Etiology of obesity

- 1. Disequilibrium between energy intake and expenditure
 - High calorie diet
 - Easy availability of food
 - · WHO average energy intake
 - 1963 9660 kJ
 - 1971 10 250 kJ
 - 1992 11 420 kJ2010 12 200 kJ
 - Sedentary lifestyle

15

Etiology of obesity

2. Obesogens

- chemical compounds that have effect to lipid metabolism and accumuation, and can lead to obesity
 - drugs (steroids [glucocorticoids], antidiabetics, antiepressants, antiepileptics, antihistamines, contareceptives)
 - substances occurring naturally in certain foods (e.g. phytoestrogens such as genistein found in soya)
 - substances added to foods (glucose-fructose syrup),
 - substances released into foods from plastics (phtalates),
 - pesticides (e.g. tributyltin)

Etiology

3. Endocrine diaseases

- rare
- Cushing's syndrome,
- hypothyreodism,
- hypogonadism,
- growth hormone deficiency,
- insulinoma

Cushing's syndrome

- 4. Hypothalamic obesityweight gain after hypothalamic damage
 - rare in humans

17

Hormone	Place of	Function in obesity pathogenesis		
production				
Leptin	Adipose tissue	Reduces appetite, increases energy expenditure		
Ghrelin	Stomach	Stimulates the feeling of hunger and increases food intake, affects GIT activity and insulin secretion		
Peptide YY	Ileum, colon	Inhibits apetite		
Orexin	Brain	Increases appetite, reduces the feeling of satiety		
Cortizol	Adrenal cortex	In excess causes increased fat storage		
T3, T4	Thyroid gl.	Deficiency reduces energy expenditure independent of physical activity		
Insulin	Pancreas	Stimulates fat storage		
	Produced by adip- tissue, leptin sup- appette as its level inc When body fat dec leptin levels fall, and in	presses reases, reases, reases reases reases reases reases A rise in blood sugar level after a meal stimulates the pancreas to secrete		

Etiology

5. Other factors

- Social, economic, cultural, psychical factors
- Ethnicity

Race and obesity in USA (2002 - 2007)				
	White	Black	Hispanic	Asian
Average BMI	27	28.6	27.6	24
% of obese	24.5	36	28.6	7

- Eating disorders binge eating, night binge eating
- Stress
- Virus infection adenoviruses (by affecting adipocyte growth and differentiation, glucose uptake by cells, and inhibiting leptin production by adipose tissue)
- Sleep deprivation (reduction of leptin production and increase of ghrelin and orexin levels, leading to appetite stimulation, increased food intake, and subsequent obesity).
- 6. Inherited obesity ???

19

Genetics of obesity

I can't blame myself for being fat. I's FTO gene.

Monogenic obesity

- · Obesity caused by single gene mutation
- · Extremely rare
- * Mutations of genes of the leptin/melanocortin axis \rightarrow abnormality in foot intake regulation
- Severe obesity, early onset

Examples

- · Mutation of leptin gene
- · Mutation of leptin receptor gene
- · Mutation of proopiomelanocortin gene
- · Mutation of proconvertase 1 gene
- •

21

Leptin

- · Hormon produced mainly by white adipose tissue
- Encoded by the Ob(Lep) gene on ch7
- Receptor LEP-R located mainly in hypothalamus

→ reduction of adipose tissue

Syndromic obesity

- · Obesity associated with genetic syndromes
- · Can be monogenic or chromozomal syndromes
- · Very rare
- Severe obesity associated with additional phenotypes (mental retardation, dysmorphic features, organ abnormalities...)

Examples

- · Prader-Willi syndrome
- · Bardet-Biedl syndrome
- · Cohen syndrome
- · Alström syndrome
- · Fragile X syndrome
- ... other more than 100 syndromes (Down sy., Turner sy., Klinefelter sy.)

Prader-Willi syndrome

 Genetic disease that affects hypothalamicpituitary axis

Causes

- > 75% deletion of long arm of paternal chromosome 15
- < 25% uniparental disomia of maternal ch15, defect of imprinting

Signs

- · Obesity
- Hypotonia
- Hypogonadism
- · Mild intelectual disability
- Prominent nasal bridge, small hands and feet with tapering of fingers, soft skin, which is easily bruised, thin upper lip, downturned mouth

25

Bardet-Biedl syndrome

- · Genetic disease that affects many organ systems
- Frequency 1:150 000

Causes

- AR inherited mutation of one from BBS genes (14 genes)
- · Damage of structure or function of cilia

Signs

- Obesity + insulin resistance, hypertension, hypercholesterolemia
- Retinitis pigmentosa night blidness, loss of vision, strabismus, cataract
- Polydactyly sometimes brachydactyly, syndactyly
- Hypogonadism + renal failure, defects of urinary tract

Genetics of common obesity

- Polygenic genetic predisposition (gene polymorphism) + environmental factors
- · Majority of obesity

Examples of candidate genes

- · FTO gene
- MC4R, TMEM18, KCTD15 ...

...and many many other

FTO gene

- · Fat mass and obesity-associated gene chromosome 16
- · Protein alpha-ketoglutarate-dependent dioxygenase
- · Function in regulation of food intake satiety, apetite, overeating
- Increased risk of obesity heterozygotes weigh on average 1.2 kilograms more than people with no copies, homozygotes weigh 3 kilograms more
- Incerased risk of diabetes mellitus type 2, metabolic syndrome, dyslipidemia, Alzheimer's disease

27

Thrifty gene hypothesis

- Neel (1962): "Individuals who could easily store extra energy would have had an evolutionary advantage during famines".
- Thrifty genes are genes which enable individuals to efficiently collect and process food to deposit fat during periods of food abundance.
- These genes were advantageous in environments where feast-andfamine cycles were common because they enabled individuals to store excess energy as fat during periods of plenty, helping them survive during subsequent periods of famine.
- Today same "thrifty" genes may predispose individuals to obesity and related metabolic conditions, like type 2 diabetes mellitus.

Adipose tissue

- · Fat tissue, type of connective tissue
- · Structure
 - Adipocytes, vascular endothelial cells, fibroblasts, adipocyte progenitors, leukocytes, macrophages
- Localisation
 - Subcutaneous 80 % (abdominal, gluteo-femoral)
 - Between muscular fibres
 - Visceral around the digestive organs (mesenteric and omental) and the retroperitoneal depot (kidney)
 - In bone marrow

31

Adipose tissue

- · Types od adipose tissue
 - White adipose tissue
 - Brown adipose tissue
 - Beige adipose tissue
- Function
 - Energy storage
 - Body insulation
 - Termoregulation
 - Endocrine function production of adipokines and cytokins
 - · Insulin resistence and diabtes mellitus
 - · Metabolic syndrome
 - · Chronic inflammation
 - · Cancer

Types of adipose tissue

- · White
 - Function
 - · fat storage
 - increased body weight
 - decreased energy expenditure
 - decreased insulin sensitivity
 - Location
 - · Subcutaneous, visceral

Types of adipose tissue

- Brown
 - Function
 - Thermogenesis
 - · Whole-body energy and glucose homeostasis
 - Increased energy expenditure
 - Decreased body weight
 - Increased insulin sensitivity
 - Location
 - · Newborn interscapular, perirenal area
 - Adult cervical, subclavicular, axillary, paravertebral, suprarenal area
- · Beige
 - Function
 - · As brown adipose tissue
 - Location
 - · In subcutaneous white adipose tissue

35

Growth of adipose tissue

- · hyperplasia (impossible

Factors

- 1. Chronic Overnutrition
- 2. Genetic Predisposition
- 3. Hormonal Factors
 - Insulin insulin resistance promotes the proliferation and differentiation of preadipocytes into mature fat cells.
 - Cortisol increases fat storages
 - Estrogen higher tendency to hyperplasia during puberty, pregnancy and mainly in postmenopausal women
- 4. Diet Composition
- 5. Hypoxia
- 6. Inflammation permanent low-grade inflammation

37

Localisation of adipose tissue

- Subcutaneous
- · Visceral

Visceral fat

· Intraabdominal white adipose tissue

Amount of visceral fat and subcutaneous/visceral fat ratio depends on:

- Genetic predisposition
- Gender
 - Men in any age (testosteron)
 - · Women after menopause
- Age
 - · Older people
- Total amount of fat in organism
- Energy intake

39

"Metabolic obesity"

- · Metabolically obese, normal-weight (MONW) people
 - Normal BMI, suffer from metabolic complications found in obese people
- · Metabolically healthy obese (MHO) people
 - BMI > 30 kg/m², without metabolic complications typical for obese people

The main risk factor of metabolic complications is visceral fat

41

Why is visceral fat risky?

- Increased lipolytic activity leads to hyperlipidemia
- · Causes hyperinsulinemia and insulin resistance
- Produces hormons and cytokins leads to permanent lowgrade inflammation

consequently

- · Visceral fat is risk factor of:
 - Cardiovascular diseases
 - Diabetes mellitus type 2
 - Some cancers cancer of endometrium, colorectal cancer, cancers of breast, pancreas, ovary, prostate...

Hormons produced by adipose tissue

Leptin

- regulation of adipose tissue mass through central hypothalamus mediated effects on hunger, food energy use, physical exercise and energy balance
- contraregulation hormon is ghrelin ("hunger hormon"), hormon produced by ghrelin cells in stomach when stomach is empty

· Adiponektin

- regulates glycemia, and oxidation of fatty acids
- enhances energy metabolism and fatty acid oxidation by activating peroxisome proliferator-activated receptor (PPARy)
- promotes fatty acid combustion and promotes insulin sensitivity by activating AMP-activated protein kinase
- decreased in obesity, type-2 diabetes, and coronary artery disease
- increased in anorexia
- Estrogens
- Angiotenzinogen promotes the development of hypertension in obese people (produced mainly in liver)

43

Metabolic syndrome

metabolic syndrome X, syndrome X, insulin resistance syndrome, Reaven's syndrome

Metabolic syndrome is a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes.

It affects one in five people, and prevalence increases with age.

Signs and symptoms

- Fasting hyperglycemia diabetes mellitus type 2 or impaired fasting glucose, impaired glucose tolerance, or insulin resistance
- High blood pressure
- Central obesity
- Decreased HDL cholesterol
- Elevated triglycerides

45

Metabolic syndrome

New classification - Berlin 2005

At least three of the following signs:

- ★ Abdominal obesity waist circumference men > 94 cm women > 80 cm
- ↓ Elevated triglycerides
 TAG > 1,7 mmol/l
- Reduced HDL-cholesterol men < 0,9 mmol/l women < 1,1 mmol/l

- **↓** Elevated blood pressure
- > 130/85 mmHg or use of medication for hypertension
- Elevated fasting glucose
 5,6 mmol/l
 or use of medication for diabetes

Measurement of obesity

Body mass index

BMI = $\frac{\text{mass in kg}}{(\text{height in m})^2}$

Classification	BMI Category (kg/m2)	Risk of Developing Health Problems	
Underweight	< 18.5	Increased	
Normal Weight	18.5 – 24.9	Least	
Overweight	25.0 – 29.9	Increased	
Obese			
Class I	30.0 - 34.9	High	
Class II	35.0 – 39.9	Very High	
Class III	≥ 40.0	Extremely High	

Brocc's index (old)

Normal weight = height in cm - 100 Ideal weight = (height in cm - 100) - 10-15%

Skin fold

(biceps, triceps, subscapular, suprailiacal...)
Fat: men 10 - 20% of body weight
women 20 - 30% of body weight

47

Measurement of obesity

· Waist to hip ratio (WHR)

WHR > 1,0 in men - abdominal obesity > 0,8 in women

· Waist circumference

Men > 94 cm, women > 80 cm - increased risk

Men > 102 cm, women > 88 cm - very increased risk

Complications of obesity

- Metabolic complications
 - Insulin resistance hyperinsulinemia - DM type 2
 - dislipidemia
 - hyperuricemia...
- · Endocrine disesases
 - hypogonadism
 - Hyposecretion of growth hormone...
- CVS diseases
 - hypertension
 - ICHS
 - arrhytmias
- · Respiratory diseases
 - Pickwick syndrome
 - Sleep apnoea syndrome...

- · GIT and liver
 - gastroezofageal reflux
 - cholelitiasis
 - pankreatitis
 - liver steatosis...
- Gynekologic complications
 - oligomenhorhea
 - complications during pregnancy...
- Onkologic complications
 - Kolorectal ca...
- · Psychosocial complicaytions
 - social discrimination
 - depression
 - eating disorders
- Other

Malnutrition

51

Causes

- exogenous
 - inadequate intake of nutrients (starvation, loss of appetite, mental anorexia)
- · endogenous
 - disorders of digestion
 - disorders of absorption
 - disorders of metabolism
 - increased nutrient requirements (hyperthyroidism, gravidity, lactation, convalescence...)
 - loss of body fluids (bleeding)
 - loss of proteins (nephrotic syndrome)

Higher risk of malnutrition

- · poor people
- · sucklings and children
- · adolescents in period of accelerated growing
- · old people
- · people on radical diet
- vegetarians
- · alcoholics a people on drugs
- · patients with AIDS
- · patients with chronic GIT, liver, kidney diseases

53

Metabolic changes during starvation

The body mobilizes reserves

- The stores of glycogen are converted to glucose (12 24 h)
- · Glucose is produced by gluconeogenetic pathway in liver
- V concentration of glucose
- Ψ concentration of insulin, \spadesuit concentration of glucagon
- 🛧 lipolysis a b-oxidation of fatty acids
- · Hyperlipidaemia, ketoacidosis
- · After using of fatty stores catabolism of proteins

55

Protein Energy Malnutrition PEM

Marasmus

- · inadequate intake of all nutrients
- cause: poorness, psychic disease, starvation...

Clinical signs

- in children: weight loss, muscle atrophy, weakness, fatigue, decreased immune function, anaemia, delayed wound healing
- · in adults: cachexia

57

Kwashiorkor

- protein malnutriotion (adequate energy suply - saccharides)
- signs: oedema, growth retardation, weight loss, skin and hair depigmentation thin and sensitive skin, diarhea, anaemia, apatia, muscle atrophy, immunodeficiency low serum protein concentration

Cachexia

- · extreme thinness, extreme skinny
- Wasting syndrome

Causes

- · Undernutrition (marasmus, anorexia...)
- · Cancers
- · AIDS
- · Chronic diseases COPD
- ..

Mechanisms

- · Not fully understood
- · Changes in metabolism (cytokines e.g. TNF)
- · Changes in apetite regulation (leptin)

59

Specific (qualitative) malnutritions

- protein deficiency kwashiorkor
- · iodine deficiency endemic goiter
- vitamin A deficiency xerostomia, xeroftalmia
- Fe, folic acid, vit. B₁₂ deficiency anaemias
- vitamin D, Ca, Mg, P deficiency –
 osteopaties (rickets, osteomalacia, osteoporosis)
- · tiamin deficiency beri-beri
- · riboflavin deficiency oral cavity inflammation
- · niacin deficiency pelagra
- vitamin C scurvy

Eating disorders

Anorexia (gr.) - lack of desire to eat

 Anorexia nervosa - eating disorder characterized by extreme weight control

Diagnostic criteria

- obsessive fear of gaining weight, control body weight through voluntary starvation, excessive exercise, diet pills...
- · pathological fear of being obese
- · amenorrhoea in women

65

 Mental bulimia - eating disorder characterized by repeated episodes of overeating followed by exaggerated weight control

Diagnostic criteria

- strong desire to eat (big amount and strange combination)
- to avoid being fat vomiting, laxatives abuse, diuretics abuse, episodes of starvation,
- · pathological fear to be obese

Binge eating, an eating disorder with episodes of uncontrollable eating. During these episodes, a person rapidly consumes an excessive amount of food. They try to hide this behaviour from others, and often feel ashamed about being fat or depressed about their overeating. Eating binges can be followed by so-called compensatory behaviour: purging, fasting and heavy exercising.

Night eating syndrome, an eating disorder, parasomnia, characterized by a pattern of latenight binge eating.

71

