Protocol 2 Special Pathophysiology Anaemia

Introduction

Anaemia is a syndrome characterized by a decreased concentration of haemoglobin (Hb), a reduced number of red blood cells (RBC), and a decreased haematocrit (Hct) below the lower limit of reference values. As a result, the blood's oxygen-carrying capacity is reduced, leading to tissue hypoxia and the development of typical clinical manifestations.

The anaemic syndrome arises from a wide range of causes and develops through various mechanisms. Understanding the etiopathogenesis of individual forms of anaemia is therefore essential for correct diagnosis and for proper and effective treatment.

Classification of anaemias according to etiology

A. Disorders of erythrocyte production

Name of anaemia	Cause	Mechanism	
Sideropenic	Iron deficiency	Impaired haem synthesis	
Megaloblastic	Vitamin B12 or folic acid deficiency	Impaired DNA synthesis	
Sideroblastic	Hereditary (ALA-synthetase deficiency) Acquired (heavy metal poisoning)	Impaired haem synthesis	
Aplastic	Hereditary (Fanconi anaemia) Acquired (radiation, chemical agents) Myelodysplastic syndrome Suppression of bone marrow haematop		
Anaemia of chronic diseases	In chronic inflammation, infections, malignant diseases	 Cytokines in chronic inflammation: ↑ hepcidin production → ↓ Fe Excessive IL-6 expression Inhibition of erythropoiesis 	
	In chronic kidney disease	↓ erythropoietin, haemolysis, bone marrow suppression	
	In hematopoietic malignancies and bone metastases	Bone marrow infiltration	
	In chronic liver diseases	Lack of transferrin, ferritin Inflammatory cytokines	
Sickle cell anaemia	Inherited mutation of the gene encoding the β-chain of HbA	Production of pathological HbS	
Thalassemias	Hereditary	Impaired synthesis of the α - or β -chain of haemoglobin	
Other	Protein deficiency	Lack of transferrin, ferritin, etc.	
	Deficiency of vitamin B1, B6, C	Suppressed erythropoiesis, impaired hem synthesis, impaired Fe absorption	

B. Increased loss of erythrocytes

Name of anaemia	Cause
	Acute blood loss (trauma, surgery, blood donation)
Post-haemorrhagic	Chronic blood loss (gastrointestinal bleeding – ulcers, tumours, haemorrhoids; gynaecological bleeding – menorrhagia, metrorrhagia)

C. Increased destruction of erythrocytes (haemolytic anaemias)

Name of anemia	Cause	Example	
Corpuscular haemolytic (congenital, hereditary)	Membranopathies	Hereditary spherocytosis, hereditary eliptocytosis	
	Enzymopathies	G6PD deficiency, pyruvate-kinase deficiency	
	Haemoglobinopathies	Sickle cell anaemia, thalassemias	
Extracorpuscular haemolytic (acquired)	Immune-mediated	Rh incompatibility, transfusion reactions, autoimmunity	
	Mechanical damage	Valve defects, artificial heart valve	
	Toxic damage	Lead poisoning, snake venom	
	Infections	Malaria, babesiosis	
	Acquired membrane disorders	Paroxyzmal nocturnal haemoglobinuria	

D. Other

Name	Cause	
	Hemodilution	
Relative anaemia	3. trimester of gravidity	
"false anaemia"	retention of fluids in cardiovascular and renal diseases	
Anaemia spuria	Redistribution of erythrocytes	
	splenomegaly	
Hidden anaemia	Hemoconcentration in dehydration or hypoproteinemia may mask anaemia	

Clinical classification of anaemias

a. According to the time of onset (time course)

Name	Example	
Acute	Acute bleeding due to injury, vessel rupture	
Chronic	hronic blood loss, chronic diseases, iron or vitamin deficiency	

b. According to the size of erythrocytes (MCV)

a. Hoodianig to the disc of orythroughts (mot)		
Name	Example	
Mikrocytic	Iron deficiency, disorders of haem or globin synthesis	
Normocytic	Posthemorrhagic, haemolytic anaemia, anaemia of chronic diseases	
Makrocytic	Megaloblastic anaemia	

c. According to the haemoglobin content in erythrocytes (MCH)

Name	Example		
Hypochromic	Iron deficiency, disorders of haem or globin synthesis		
Normochromic	Posthemorrhagic, haemolytic anaemia		
Hyperchromic	Megaloblastic anaemia		

d. Based on the effective production of erythrocytes in the bone marrow

Name	Example	
Aregenerative	Aplastic anaemia	
Hyporegenerative	Iron deficiency anaemia	
Regenerative	Posthemorrhagic, haemolytic anaemia	

Clinical symptoms of anaemias

Clinical symptoms of anaemias are divided into general (nonspecific) and specific symptoms. Nonspecific symptoms occur in all types of anaemia and arise mainly due to reduced haemoglobin transport capacity and the development of compensatory mechanisms. Specific symptoms are characteristic only for certain types of anaemia and reflect the particular pathogenetic mechanisms involved in their development—such as manifestations of iron deficiency, generalized suppression of haematopoiesis, or increased breakdown of haem to bilirubin, etc.

General (nonspecific) symptoms

- Reduced oxygen transport hypoxia
 - Dyspnoea, fatigue, weakness, dizziness, malaise, paleness
 - o In patients with coronary artery disease angina pectoris (substernal pain)
- Reduced plasma volume
 - o Postural hypotension
- Increased cardiac output
 - Palpitations, murmurs, tachycardia

Specific Symptoms

- Iron-deficiency anaemia
 - o Koilonychia (nail deformities), brittle nails
 - Hair loss
 - o Pica (eating non-food items such as ice, paper, etc.) rare
 - Inflammation in the oral cavity
 - Swallowing disorders
 - Gastritis

• Haemolytic anaemia

- o Jaundice
- Splenomegaly

• Vitamin B12 deficiency

- o Ataxia
- o Peripheral neuropathy paresthesias

Aplastic anaemia

- o Thrombocytopenia bleeding tendency, bruising
- o Leukopenia increased frequency of infections

Basic haematological and biochemical parameters in anaemia diagnostics

Name	Abbrev.	Reference values	Evaluation
Haemoglobin (Hb)	HGB	men:130 - 175 g/l women:120 - 165 g/l	↓ - anaemia ↑ - polyglobulia
Red blood cell count	RBC	men: 4,2 - 5,8 x 10 ¹² /l women:3,8 - 5,2 x 10 ¹² /l	↓ - anaemia ↑ - polycythaemia
Haematocrit	НСТ	men: 0,40 - 0,54 l/l women: 0,35 - 0,45 l/l	↓ - anaemia, haemodilution↑ - polyglobulia, altitude sickness, haemoconcentration
Mean Corpuscular Volume	MCV	80 - 97 fl	↓ - microcytosis↑ - macrocytosis
Mean Corpuscular Haemoglobin	мсн	27 - 32 pg	↓ - hypochromia ↑ - hyperchromia
Mean Corpuscular Haemoglobin Concentration	мснс	320 - 370 g/l	↓ - hypochromia ↑ - hyperchromia
Red Cell Distribution Width	RDW	12 – 13,6 %	↑ - anisocytosis (heterogenity of erythrocytes)
Reticulocytes	RET	men: 0,5 – 2,5 % women:0,8 – 4,0 %	↑ - increased erythropoiesis↓ - decreased erythropoiesis
White blood cell count	WBC	4 – 10 x 10 ⁹ /l	↓ - leucopenia ↑ - leucocytosis
Platelet count	PLT	140 – 420 x 10 ⁹ /l	↓ - thrombocytopenia↑ - thrombocytosis
Serum iron	S-Fe	men: 14 – 28 μmol/l women: 12 – 23 μmol/l	↓ - iron deficiency↑ - haemochromatosis,haemolytic anaemias
Total Iron-Binding Capacity	TIBC	44 - 80 μmol/l	↓ - liver diseases, infections, inflammation↑ - iron deficiency
Transferrin	TRF	2,0 - 3,6 g/l	
Transferrin saturation	sat.TRF	15 – 45 %	
Ferritin	FER	men: 30 – 400 μg/l women: 15 – 300 μg/l	
Folic acid	FOLAT	12,19 – 54,35 nmol/l	↓ - megaloblastic anaemia
Vitamin B12	B12	156 – 672 pmol/l	 ↓ - megaloblastic anaemia, hyperhomocysteinaemia → cardiovascular risk
Erythrocyte sedimentation rate	FW	men: 2 - 5 mm/h women: 3 - 8 mm/h	↑ - anaemia ↓ - polyglobulia
Lactate dehydrogenase	LDH	< 8 μkat/l	↑ - haemolysis
Total bilirubin	S-BIL-T	•	↑ - haemolysis, liver diseases
Conjugated bilirubin	S-BIL-D	•	↑ - liver diseases
Unconjugated bilirubin	S-BIL-I	BIL-I = BIL-T – BIL-D	↑ - haemolysis

Case studies

Case Study 1

History: A 47-year-old administrative worker, reports progressively increasing fatigue, weakness, reduced performance during normal physical activity, and shortness of breath when climbing stairs, lasting about 6 months. In recent weeks, he has noticed pale skin and mild scleral icterus. No night sweats, bleeding, or infections. His diet is normal. He drinks 2-3 beers daily for the past 10 years. No known hereditary haematological diseases in the family history. No regular medication.

Physical examination:

Pale skin, mild scleral icterus, heart rate 92/min, hepatomegaly.

Laboratory findings:

HGB 96 g/L, HCT 0.3, MCV 94 fL, MCHC 310 g/L, RET 0.5%, S-Fe 38 μmol/L, FER 540 μg/L, TIBC 28 µmol/L, sat.TRF 80%, S-BIL 28 µmol/L, LDH mildly elevated, bone marrow aspiration: sideroblasts.

- 1. What changes are present in the haematological parameters?
- 2. What type of anaemia does the patient have (diagnosis)?
- 3. What is the etiopathogenesis of this anaemia?
- 4. Which enzyme is blocked in this disorder?
- 5. Describe the anaemia according to the morphological classification.

Case Study 2

History: A 32-year-old female teacher reports several months of fatigue, decreased concentration, palpitations during physical exertion, and frequent headaches. Recently, she has noticed increased hair loss, brittle nails, and dry skin. Her menstruation is regular but heavy (lasting 6-7 days, requiring pad changes every 2-3 hours). She is a vegetarian, consumes large amounts of coffee and tea, has no significant family history, and takes no medication.

Physical examination:

Pale skin and mucous membranes, dry and brittle hair, thin nails (koilonychia), tachycardia 100/min, normal blood pressure, no hepatosplenomegaly.

Laboratory findings:

HGB 92 g/L, HCT 0.29, MCV 72 fL, MCHC 290 g/L, S-Fe 5 µmol/L, RET 0.6%, FER 8 µg/L, TIBC 78 µmol/L, sat.TRF 6%, RDW increased.

- 1. What changes are present in the haematological parameters?
- 2. What type of anaemia does the patient have (diagnosis)?
- 3. What is the etiopathogenesis of this anaemia?
- 4. Describe the anaemia according to the morphological classification.

Case Study 3

History: A 58-year-old female accountant reports progressively worsening fatigue, pallor, palpitations, and dizziness. In recent months she has noticed burning of the tongue, loss of appetite, and tingling in the fingers and toes. No bleeding or infections. She eats a normal diet but has recurrent digestive problems and reports poor tolerance for meat. Family history is negative. Five years ago, autoimmune (atrophic) gastritis was diagnosed—confirmed by positive antibodies against parietal cells and intrinsic factor (IF).

Physical examination:

Pale skin with mild jaundice, smooth and red tongue (atrophic glossitis – "beefy red tongue"), pulse 88/min, balance disturbances and decreased sensation in the lower limbs (polyneuropathy), no hepatosplenomegaly. **Laboratory findings:**

HGB 82 g/L, HCT 0.26, MCV 118 fL, MCHC 330 g/L, RET 0.3%, WBC 3.2 ×10⁹/L, PLT 110 ×10⁹/L, serum vitamin B12 85 pmol/L, folate normal, S-BIL-I 32 µmol/L.

Bone marrow: megaloblasts, hypersegmented neutrophils

Intrinsic factor antibodies: positive

- What changes are present in the haematological parameters?
 What type of anaemia does the patient have (diagnosis)?
 What is the etiopathogenesis of this anaemia? Which blood cell lines are also affected?
- 4. What additional (non-haematological) symptoms occur in this type of anemia?
- 5. Describe the anaemia according to the morphological classification.

Case Study 4

History: A 26-year-old male technician reports progressively worsening fatigue, pallor, frequent dizziness, and palpitations during the past 2 months. He has also noticed frequent nosebleeds, easy bruising, and prolonged bleeding after minor injuries. In recent weeks, he has experienced recurrent upper respiratory tract infections. Three months ago, he was treated with chloramphenicol for bronchitis. No other chronic medications, no hematologic diseases, does not drink or smoke, does not work with chemicals or in a hazardous environment.

Physical Examination

Pale skin and mucous membranes, petechiae and ecchymoses on the forearms and legs, no jaundice, no hepatosplenomegaly, heart rate 96/min, blood pressure 110/70 mmHg. Signs of infection – mildly enlarged cervical lymph nodes, low-grade fever.

Laboratory Tests

HGB 72 g/l, HCT 0.22, MCV 90 fl, MCHC 335 g/l, RET 0.1%, WBC 1.8 ×10°/l, NEU 0.7 ×10°/l (normal 2-7 ×10°/l), PLT 22 ×10°/l, RTC index below 0.5 (normal above 2), bilirubin and LDH normal.

Bone marrow: hypocellular, fatty degeneration, depletion of all hematopoietic lineages.

- 1. What are the changes in hematologic parameters?
- 2. What type of anaemia does the patient have (diagnosis)?
- 3. What is the etiopathogenesis of this anaemia? Which blood elements are also affected?
- 4. What additional (non-hematologic) symptoms occur in this type of anaemia?
- 5. What is the difference between this anaemia and haemolytic anemia?
- 6. Describe the anaemia according to the morphological classification.

Case Study 5

History: A 64-year-old retired man is being followed long-term for diabetic kidney disease (type 2 diabetes mellitus for more than 20 years). Over the past year, he reports progressive fatigue, pallor, sleepiness, decreased performance, occasional dizziness, and dyspnea. He does not report infections or bleeding. He follows a diabetic diet with restricted protein intake. No hematologic diseases in the past. Medications: metformin, ACE inhibitor, furosemide, insulin. No exposure to cytotoxic drugs.

Physical Examination

Pale, dry skin with mild pruritus, blood pressure 155/90 mmHg, mild ankle oedema, slight urine-like odour on breath (uremic foetor), no signs of bleeding, jaundice, or splenomegaly.

Laboratory Tests

HGB 92 g/l, HCT 0.28, MCV 87 fl, MCHC 330 g/l, RTC 0.4, WBC and PLT normal, S-Fe 9 µmol/l, FER 32 μg/l, TIBC 38 μmol/l, sat.TRF 20%, creatinine 580 μmol/l, urea 28 mmol/l, EPO decreased, bone marrow normal.

- What are the changes in hematologic parameters?
 What type of anaemia does the patient have?
 What is the etiopathogenesis of this anaemia (multiple causes)?
- 4. Describe the anaemia according to the morphological classification.

Case Study 6

History: An 18-year-old high school student, originally from sub-Saharan Africa, living in Slovakia since childhood. Since early childhood, he has had repeated hospitalizations for bone, chest, and abdominal pain - described as painful crises. He often suffers from fatigue, pallor, and jaundice, especially after infections or dehydration. Last month he was hospitalized after severe pain in the lower limbs and chest following a respiratory infection. His mother is a sickle cell trait carrier (AS), father had sickle cell disease (SS). The patient is taking hydroxyurea and folic acid.

Physical Examination

Pale skin and mucous membranes, scleral subicterus, tachycardia (110/min), tenderness of long bones on palpation, mild splenomegaly (in childhood). In later life is possible autosplenectomy (splenic atrophy due to repeated infarctions).

Laboratory Tests

HGB 85 g/l, HCT 0.26, MCV 88 fl, MCHC 340 g/l, RTC 8%, S-BIL-I 45 µmol/l, elevated LDH, low haptoglobin.

Bone marrow: hypercellular – erythroid hyperplasia.

Blood smear: sickle cells (drepanocytes), target cells, Howell-Jolly bodies.

Haemoglobin electrophoresis: HbS 92%, HbF 6%, HbA2 2%.

- What are the changes in hematologic parameters?
 What type of anaemia does the patient have?
 What is the etiopathogenesis of this anaemia?
 How does the altered haemoglobin contribute to vasoocclusion?
- 5. Describe the anaemia according to the morphological classification.

Case Study 7

History: A healthy 35-year-old male pharmaceutical laboratory worker, without chronic diseases. Two weeks ago he was treated for a urinary tract infection – prescribed trimethoprim-sulfamethoxazole (Biseptol). Four days after starting treatment, he developed fatigue, dark urine, jaundice, and lumbar pain. No fever, no bleeding, no weight loss. His father had "yellow eyes and dark urine" after antimalarial medications. No long-term medications, no toxin or alcohol exposure.

Physical Examination

Pale skin and mucous membranes, mild scleral and skin icterus, no splenomegaly or hepatomegaly, heart rate 105/min, temperature 37.5 °C, dark brown urine.

Laboratory Tests

HGB 96 g/l, HCT 0.3, MCV 88 fl, RTC 4.5%, WBC 6.5 \times 10°/l, PLT 220 \times 10°/l, S-BIL-T 64 μ mol/l, haptoglobin < 0.1 g/l, LDH markedly increased, Fe normal.

Bone marrow: erythroid hyperplasia.

Coombs test (antibodies against RBCs): positive.

G6PD activity (after crisis): decreased.

- 1. What are the changes in hematologic parameters?
- 2. What type of anaemia does the patient have?
- 3. What is the etiopathogenesis of this anaemia?
- 4. Describe the anaemia according to the morphological classification.